Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373066

RESUMO

The majority of patients with Follicular Lymphoma (FL) experience subsequent phases of remission and relapse, making the disease "virtually" incurable. To predict the outcome of FL patients at diagnosis, various clinical-based prognostic scores have been proposed; nonetheless, they continue to fail for a subset of patients. Gene expression profiling has highlighted the pivotal role of the tumor microenvironment (TME) in the FL prognosis; nevertheless, there is still a need to standardize the assessment of immune-infiltrating cells for the prognostic classification of patients with early or late progressing disease. We studied a retrospective cohort of 49 FL lymph node biopsies at the time of the initial diagnosis using pathologist-guided analysis on whole slide images, and we characterized the immune repertoire for both quantity and distribution (intrafollicular, IF and extrafollicular, EF) of cell subsets in relation to clinical outcome. We looked for the natural killer (CD56), T lymphocyte (CD8, CD4, PD1) and macrophage (CD68, CD163, MA4A4A)-associated markers. High CD163/CD8 EF ratios and high CD56/MS4A4A EF ratios, according to Kaplan-Meier estimates were linked with shorter EFS (event-free survival), with the former being the only one associated with POD24. In contrast to IF CD68+ cells, which represent a more homogeneous population, higher in non-progressing patients, EF CD68+ macrophages did not stratify according to survival. We also identify distinctive MS4A4A+CD163-macrophage populations with different prognostic weights. Enlarging the macrophage characterization and combining it with a lymphoid marker in the rituximab era, in our opinion, may enable prognostic stratification for low-/high-grade FL patients beyond POD24. These findings warrant validation across larger FL cohorts.


Assuntos
Linfoma Folicular , Humanos , Intervalo Livre de Progressão , Linfoma Folicular/genética , Linfoma Folicular/patologia , Estudos Retrospectivos , Recidiva Local de Neoplasia , Rituximab , Microambiente Tumoral
3.
Front Immunol ; 14: 1171141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033986

RESUMO

Tumors are complex and heterogeneous diseases characterized by an intricate milieu and dynamically in connection with surrounding and distant tissues. In the last decades, great efforts have been made to develop novel preclinical models able to recapitulate the original features of tumors. However, the development of an in vitro functional and realistic tumor organ is still utopic and represents one of the major challenges to reproduce the architecture of the tumor ecosystem. A strategy to decrypt the whole picture and predict its behavior could be started from the validation of simplified biomimetic systems and then proceed with their integration. Variables such as the cellular and acellular composition of tumor microenvironment (TME) and its spatio-temporal distribution have to be considered in order to respect the dynamic evolution of the oncologic disease. In this perspective, we aim to explore the currently available strategies to improve and integrate in vitro and in vivo models, such as three-dimensional (3D) cultures, organoids, and zebrafish, in order to better understand the disease biology and improve the therapeutic approaches.


Assuntos
Ecossistema , Neoplasias , Animais , Peixe-Zebra , Neoplasias/patologia , Organoides , Esferoides Celulares/patologia , Microambiente Tumoral
4.
Transl Oncol ; 26: 101541, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36119944

RESUMO

Zhang et al. reported the impact of different risk factors and comorbidities in COVID-19 lethality. The authors observed that the odds of dying by COVID-19 in cancer patients decrease with age and cancer becomes a non-significant factor above 80 years. We speculate on the possible causes for the different COVID-19 severity between elderly and young patients. Several factors that can have a different impact on young and elderly have to be taken into account such as inflammation, microbiota and anti-cancer therapies. Inflammaging is a complex process that characterizes elderly people and it is believed to contribute to the severity of COVID-19 associated with old age. Cancer and related therapies may alter the process of inflammaging both quantitatively and qualitatively and could impact on COVID-19 severity. Moreover, therapies used in elderly cancer patients are usually different from that used for young people where the presence of comorbidities and the mechanisms of action of the different drugs both on the susceptibility genes and on other factors have to be considered. Sex hormones and anti-estrogen therapies affect significantly gene expression in target cells thereby modulating the susceptibility of the tissues to SARS-CoV-2 infection and as a consequence the extent of the symptoms. The concentration of sex hormones varies with aging and among sexes. Interestingly, recent evidences, further corroborate the hypothesis that also sex hormones or anti-estrogen therapies impact the susceptibility to COVID-19 and its severity.

5.
Expert Opin Ther Targets ; 26(7): 593-602, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35962580

RESUMO

INTRODUCTION: Breast cancer (BC) is the most common diagnosed cancer and the second leading cause of cancer-associated death in women, with the triple negative (TNBC) subtype being characterized by the poorest prognosis. New therapeutic targets are urgently needed to overcome the high metastatic potential, aggressiveness and poor survival of these tumors. Trop2 transmembrane glycoprotein, acting as an intracellular calcium signal transducer, recently emerged as a new potential target in epithelial cancers, in particular in breast cancer. AREAS COVERED: We summarize the key features of Trop2 structure and function, describing the therapeutic strategies targeting this protein in cancer. Particular attention is paid to antibody-drug conjugates (ADCs), actually representing the most successful strategy. EXPERT OPINION: ADCs targeting Trop2 recently received an accelerated FDA approval for the therapy of metastatic TNBC. The prospects for these novel ADCs in BC subtypes other than TNBC are discussed, taking into account the main pitfalls relative to Trop2 structure and function.


Assuntos
Imunoconjugados , Neoplasias de Mama Triplo Negativas , Anticorpos Monoclonais Humanizados , Antígenos de Superfície/uso terapêutico , Camptotecina/química , Camptotecina/uso terapêutico , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Trofoblastos/patologia
6.
Molecules ; 27(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889200

RESUMO

Different pathological conditions, including viral infections and cancer, can have a massive impact on the endoplasmic reticulum (ER), causing severe damage to the cell and exacerbating the disease. In particular, coronavirus infections, including SARS coronavirus-2 (SARS-CoV-2), responsible for COVID-19, cause ER stress as a consequence of the enormous amounts of viral glycoproteins synthesized, the perturbation of ER homeostasis and the modification of ER membranes. Therefore, ER has a central role in the viral life cycle, thus representing one of the Achilles' heels on which to focus therapeutic intervention. On the other hand, prolonged ER stress has been demonstrated to promote many pro-tumoral attributes in cancer cells, having a key role in tumor growth, metastasis and response to therapies. In this report, adopting a repurposing approach of approved drugs, we identified the antiplatelet agent ticlopidine as an interferent of the unfolded protein response (UPR) via sigma receptors (SRs) modulation. The promising results obtained suggest the potential use of ticlopidine to counteract ER stress induced by viral infections, such as COVID-19, and cancer.


Assuntos
Tratamento Farmacológico da COVID-19 , Neoplasias , Reposicionamento de Medicamentos , Estresse do Retículo Endoplasmático , Humanos , Neoplasias/patologia , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , SARS-CoV-2 , Ticlopidina/farmacologia , Resposta a Proteínas não Dobradas
7.
Cell Death Dis ; 13(1): 80, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075119

RESUMO

Glioblastoma (GBM) is the most lethal brain tumor in adults. Radiation, together with temozolomide is the standard treatment, but nevertheless, relapse occurs in nearly all cases. Understanding the mechanisms underlying radiation resistance may help to find more effective therapies. After radiation treatment, ATP is released into the tumor microenvironment where it binds and activates purinergic P2 receptors, mainly of the P2X7 subtype. Two main P2X7 splice variants, P2X7A and P2X7B, are expressed in most cell types, where they associate with distinct biochemical and functional responses. GBM cells widely differ for the level of P2X7 isoform expression and accordingly for sensitivity to stimulation with extracellular ATP (eATP). Irradiation causes a dramatic shift in P2X7 isoform expression, with the P2X7A isoform being down- and the P2X7B isoform up-modulated, as well as extensive cell death and overexpression of stemness and senescence markers. Treatment with P2X7 blockers during the post-irradiation recovery potentiated irradiation-dependent cytotoxicity, suggesting that P2X7B activation by eATP generated a trophic/growth-promoting stimulus. Altogether, these data show that P2X7A and B receptor isoform levels are inversely modulated during the post-irradiation recovery phase in GBM cells.


Assuntos
Trifosfato de Adenosina , Glioblastoma , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , Recidiva Local de Neoplasia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Purinérgicos P2X7/genética , Microambiente Tumoral
8.
Front Cell Dev Biol ; 10: 1048360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684442

RESUMO

The role of the intestinal microbiota in the promotion, progression, and response to therapies is gaining importance, but recent studies confirm the presence of microbiota also in the tumor, thus becoming a component of the tumor microenvironment. There is not much knowledge on the characteristics and mechanisms of action of the tumor resident microbiota, but there are already indications of its involvement in conditioning the response to therapies. In this review, we discuss recent publications on the interaction between microbiota and anticancer treatments, mechanisms of resistance and possible strategies for manipulating the microbiota that could improve treatments in a personalized medicine perspective.

9.
Transl Oncol ; 15(1): 101300, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34864401

RESUMO

Ma and colleagues reported in their study on 12,004 elderly patients published on Breast J. 2020, that adjuvant chemotherapy was not associated with overall survival. Given the toxicities associated with systemic treatments, caution recommendation or omission of chemotherapy may be considered in elderly patient selection especially when comorbidities are present. We agree with authors final conclusions but we want to highlight that to define the adjuvant therapy in BC elderly patients several factors need to be taken into account. One of the main issues is the lack of universal and unique guidelines to define elderly patients. In clinical practice it can be very difficult to estimate the benefit/risk ratio in elderly patients because chemotherapy-induced toxicity is worse than in younger individuals. For these reasons, beyond comorbidities, the choice of adjuvant therapy for elderly patients must also be based both on chronological and biological age. Moreover, the multidisciplinary team for the elderly patient evaluation should include both the geriatrician and the molecular biologist.

10.
J Exp Clin Cancer Res ; 40(1): 89, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33673859

RESUMO

BACKGROUND: Recent developments in abscopal effect strongly support the use of radiotherapy for the treatment of metastatic disease. However, deeper understanding of the molecular mechanisms underlying the abscopal effect are required to best benefit a larger proportion of patients with metastasis. Several groups including ours, reported the involvement of wild-type (wt) p53 in radiation-induced abscopal effects, however very little is known on the role of wtp53 dependent molecular mechanisms. METHODS: We investigated through in vivo and in vitro approaches how wtp53 orchestrates radiation-induced abscopal effects. Wtp53 bearing (A549) and p53-null (H1299) NSCLC lines were xenotransplanted in nude mice, and cultured in 2D monolayers and 3D tumor spheroids. Extracellular vesicles (EVs) were isolated from medium cell culture by ultracentrifugation protocol followed by Nanoparticle Tracking Analysis. Gene expression was evaluated by RT-Real Time, digital qRT-PCR, and dot blot technique. Protein levels were determined by immunohistochemistry, confocal anlysis, western blot techniques, and immunoassay. RESULTS: We demonstrated that single high-dose irradiation (20 Gy) induces significant tumor growth inhibition in contralateral non-irradiated (NIR) A549 xenograft tumors but not in NIR p53-null H1299 or p53-silenced A549 (A549sh/p53) xenografts. We further demonstrates that irradiation of A549 cells in vitro induces a senescence-associated secretory phenotype (SASP) producing extracellular vesicles (EVs) expressing CD63 and carrying DNA:RNA hybrids and LINE-1 retrotransposon. IR-A549 EVs also hamper the colony-forming capability of recipient NIR A549 cells, induce senescent phenotype, nuclear expression of DNA:RNA hybrids, and M1 macrophage polarization. CONCLUSIONS: In our models, we demonstrate that high radiation dose in wtp53 tumors induce the onset of SASP and secretion of CD63+ EVs loaded with DNA:RNA hybrids and LINE-1 retrotransposons that convey senescence messages out of the irradiation field triggering abscopal effect in NIR tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Senescência Celular/fisiologia , Feminino , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Células RAW 264.7
11.
Cancer Lett ; 506: 152-166, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33652086

RESUMO

Human glioblastoma (GBM) is one of the most feared primary malignant brain tumors. We investigated the effect of hyperbaric oxygen (HBO) on GBM patient-derived cells and on microglia cell biology (CHME-5). HBO administered to GBM cells inhibited cell proliferation, downregulated hypoxia-inducible factor 1 α (HIF-1α) expression, and induced glucose metabolism reprogramming (glucose rewiring). It also affected the ability of a cell to perpetuate its lineage, give rise to differentiated cells and interact with its environment to maintain a balance between quiescence, proliferation and regeneration (stemness features). Such an effect may be ascribable to an increase in intracellular ROS levels and to the triggering of inflammasome signaling by HBO itself through caspase1 activation. Moreover, the results obtained from the combination of HBO and radiotherapy (RT) clearly showed a radiosensitising effect of HBO on GBM cells grown in both 2D and 3D, and a radioprotective effect of HBO in CHME-5. In addition, the exposure of M0 microglia cells to exhausted medium or extracellular vesicles (EVs) of HBO-treated GBM cells upregulated the expression of pro-inflammatory cytokines IL1ß, IL6 and STAT1, whilst also downregulating the anti-inflammatory cytokine PPARγ. Collectively, these data provide a scientific rationale for the use of HBO in combination with RT for the treatment of patients with GBM.


Assuntos
Glioblastoma/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interleucina-1beta/genética , PPAR gama/genética , Fator de Transcrição STAT1/genética , Caspase 1/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Glucose/genética , Glucose/metabolismo , Humanos , Oxigenoterapia Hiperbárica/efeitos adversos , Inflamassomos/efeitos dos fármacos , Interleucina-6/genética , Microglia/efeitos dos fármacos , Microglia/patologia , Oxigênio/farmacologia , Pressão , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008679

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has one of the most dismal prognoses of all cancers due to its late manifestation and resistance to current therapies. Accumulating evidence has suggested that the malignant behavior of this cancer is mainly influenced by the associated strongly immunosuppressive, desmoplastic microenvironment and by the relatively low mutational burden. PDAC develops and progresses through a multi-step process. Early in tumorigenesis, cancer cells must evade the effects of cellular senescence, which slows proliferation and promotes the immune-mediated elimination of pre-malignant cells. The role of senescence as a tumor suppressor has been well-established; however, recent evidence has revealed novel pro-tumorigenic paracrine functions of senescent cells towards their microenvironment. Understanding the interactions between tumors and their microenvironment is a growing research field, with evidence having been provided that non-tumoral cells composing the tumor microenvironment (TME) influence tumor proliferation, metabolism, cell death, and therapeutic resistance. Simultaneously, cancer cells shape a tumor-supportive and immunosuppressive environment, influencing both non-tumoral neighboring and distant cells. The overall intention of this review is to provide an overview of the interplay that occurs between senescent and non-senescent cell types and to describe how such interplay may have an impact on PDAC progression. Specifically, the effects and the molecular changes occurring in non-cancerous cells during senescence, and how these may contribute to a tumor-permissive microenvironment, will be discussed. Finally, senescence targeting strategies will be briefly introduced, highlighting their potential in the treatment of PDAC.


Assuntos
Senescência Celular , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Biomarcadores Tumorais/metabolismo , Humanos , Modelos Biológicos , Neoplasias Pancreáticas/imunologia
13.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260926

RESUMO

Pancreatic cancer (PC) remains one of the most lethal cancers worldwide. Sigma receptors (SRs) have been proposed as cancer therapeutic targets. Their main localization suggests they play a potential role in ER stress and in the triggering of the unfolded protein response (UPR). Here, we investigated the mechanisms of action of RC-106, a novel pan-SR modulator, to characterize therapeutically exploitable role of SRs in tumors. Two PC cell lines were used in all the experiments. Terminal UPR activation was evaluated by quantifying BiP, ATF4 and CHOP by Real-Time qRT-PCR, Western Blot, immunofluorescence and confocal microscopy. Cell death was studied by flow cytometry. Post-transcriptional gene silencing was performed to study the interactions between SRs and UPR key proteins. RC-106 activated ER stress sensors in a dose- and time-dependent manner. It also induced ROS production accordingly with ATF4 upregulation at the same time reducing cell viability of both cell lines tested. Moreover, RC-106 exerted its effect through the induction of the terminal UPR, as shown by the activation of some of the main transducers of this pathway. Post-transcriptional silencing studies confirmed the connection between SRs and these key proteins. Overall, our data highlighted a key role of SRs in the activation of the terminal UPR pathway, thus indicating pan-SR ligands as candidates for targeting the UPR in pancreatic cancer.


Assuntos
Neoplasias Pancreáticas/patologia , Receptores sigma/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Albuminas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Paclitaxel/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
14.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182844

RESUMO

Hypofractionation is currently considered a valid alternative to conventional radiotherapy for the treatment of patients with organ-confined prostate cancer. Recent data have demonstrated that extreme hypofractionation, which involves the use of a high radiation dose per delivered fraction and concomitant reduction of sessions, is a safe and effective treatment, even though its radiobiological rationale is still lacking. The present work aims to investigate the biological basis sustaining this approach and to evaluate the potential of a hypofractionated regimen in combination with androgen deprivation therapy, one of the major standards of care for prostate cancer. Findings show that androgen receptor (AR) modulation, by use of androgens and antiandrogens, has a significant impact on cell survival, especially in hypoxic conditions (4% O2). Subsequent experiments have revealed that AR activity as a transcription factor is involved in the onset of malignant senescence-associated secretory phenotype (SASP) and activation of DNA repair cascade. In particular, we found that AR stimulation in hypoxic conditions promotes the enhanced transcription of ATM gene, the cornerstone kinase of the DNA damage repair genes. Together, these data provide new potential insights to justify the use of androgen deprivation therapy, in particular with second-generation anti-androgens such as enzalutamide, in combination with radiotherapy.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Quimiorradioterapia/métodos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Androgênios/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/genética , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Reparo do DNA/genética , Humanos , Masculino , Metribolona/farmacologia , Modelos Biológicos , Neoplasias da Próstata/metabolismo , Hipofracionamento da Dose de Radiação , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transcriptoma
15.
DNA Repair (Amst) ; 95: 102949, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890865

RESUMO

BACKGROUND: Since its discovery in the late 19th century, radiotherapy has been one of the most important medical treatments in oncology. Recently, fasting or short-term starvation (STS) in cancer patients undergoing chemotherapy has been studied to determine its potential for enhancing the therapeutic index and for preventing side- effects, but no data are available in the radiotherapy setting. We thus decided to investigate the effects in vitro of STS in combination with radiotherapy in metastatic cancer cells and non-cancer cells. METHODS: Cells were incubated in short-term starvation medium (STS medium, 0·5 g/L glucose + 1% FBS) or in control medium (CM medium, 1 g/L glucose + 10 % FBS) for 24 h and then treated with single high-dose radiation. A plexiglass custom-built phantom was used to irradiate cells. DNA damage was evaluated using alkaline comet assay and theCometAnalyser software. The cell surviving fraction was assessed by clonogenic assay. FINDING: STS followed by single high-dose radiation significantly increased DNA damage in metastatic cancer cell lines but not in normal cells. Furthermore, STS reduced the surviving fraction of irradiated tumor cells, indicating a good radio-sensitizing effect on metastatic cell lines. This effect was not observed in non-tumor cells. INTERPRETATION: Our results suggest that STS may alter cellular processes, enhancing the efficacy of radiotherapy in metastatic cancer cellsin vitro. Interestingly, STS has radioprotective effect on the survival of healthy cells.


Assuntos
Jejum , Radioterapia , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Relação Dose-Resposta à Radiação , Humanos , Metástase Neoplásica/radioterapia , Fatores de Tempo , Microambiente Tumoral/efeitos da radiação
16.
J Hematol Oncol ; 13(1): 97, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677979

RESUMO

Cancer is a complex disease in which both genetic defects and microenvironmental components contribute to the development, progression, and metastasization of disease, representing major hurdles in the identification of more effective and safer treatment regimens for patients. Three-dimensional (3D) models are changing the paradigm of preclinical cancer research as they more closely resemble the complex tissue environment and architecture found in clinical tumors than in bidimensional (2D) cell cultures. Among 3D models, spheroids and organoids represent the most versatile and promising models in that they are capable of recapitulating the heterogeneity and pathophysiology of human cancers and of filling the gap between conventional 2D in vitro testing and animal models. Such 3D systems represent a powerful tool for studying cancer biology, enabling us to model the dynamic evolution of neoplastic disease from the early stages to metastatic dissemination and the interactions with the microenvironment. Spheroids and organoids have recently been used in the field of drug discovery and personalized medicine. The combined use of 3D models could potentially improve the robustness and reliability of preclinical research data, reducing the need for animal testing and favoring their transition to clinical practice. In this review, we summarize the recent advances in the use of these 3D systems for cancer modeling, focusing on their innovative translational applications, looking at future challenges, and comparing them with most widely used animal models.


Assuntos
Técnicas de Cultura de Células , Neoplasias/patologia , Organoides , Esferoides Celulares , Animais , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Modelos Animais , Especificidade de Órgãos , Organoides/citologia , Organoides/efeitos dos fármacos , Medicina de Precisão/métodos , Especificidade da Espécie , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Células Tumorais Cultivadas , Microambiente Tumoral
17.
Front Chem ; 8: 495, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695745

RESUMO

Despite the fact that significant advances in treatment of common cancers have been achieved over the years, orphan tumors still represent an important unmet medical need. Due to their complex multifactorial origin and limited number of cases, such pathologies often have very limited treatment options and poor prognosis. In the search for new anticancer agents, our group recently identified RC-106, a Sigma receptor modulator endowed with proteasome inhibition activity. This compound showed antiproliferative activity toward different cancer cell lines, among them glioblastoma (GB) and multiple myeloma (MM), two currently unmet medical conditions. In this work, we directed our efforts toward the exploration of chemical space around RC-106 to identify new active compounds potentially useful in cancer treatment. Thanks to a combinatorial approach, we prepared 41 derivatives of the compound and evaluated their cytotoxic potential against MM and GB. Three novel potential anticancer agents have been identified.

18.
Front Chem ; 7: 651, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616657

RESUMO

Despite the key role played by androgen receptor (AR) in tumor cell aggressiveness and prostate cancer (PCa) progression, its function in the tumor microenvironment (TME) is still controversial. Increasing studies highlight the crucial role played by TME modulation in treatment outcome and tumor cell spreading. In this context, targeting specific constituents of the TME could be considered an alternative approach to classic treatments directed against cancer cells. Currently, androgen deprivation therapy (ADT) is a routinely adopted strategy in the management of PCa, with initial success, and consecutive fail. A possible justification to this is the fact that ADT aims to target all the transcription/translation-related activities of AR, which are typical of tumor epithelial cells. Less is still known about side effects of ADT on TME. Cancer Associated Fibroblasts (CAFs), for example, express a classic AR, mostly confined in the extra-nuclear portion of the cell. In CAFs ADT exerts a plethora of non-transcriptional effects, depending by the protein partner linked to AR, leading to cell migration, proliferation, and differentiation. In recent years, substantial progress in the structure-function relationships of AR, identification of its binding partners and function of protein complexes including AR have improved our knowledge of its signaling axis. Important AR non-genomic effects and lots of its cytoplasmatic binding partners have been described, pointing out a fine control of AR non-genomic pathways. Accordingly, new AR inhibitors have been designed and are currently under investigation. Prompt development of new approaches to target AR or block recruitment of its signaling effectors, or co-activators, is urgently needed. The present review takes an in-depth look at current literature, furnishing an exhaustive state-of-the-art overview of the non-genomic role of AR in PCa, with particular emphasis on its involvement in TME biology.

19.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398940

RESUMO

Radiation therapy is one of the most important treatment modalities for thoracic tumors. Despite significant advances in radiation techniques, radiation-induced lung injury (RILI) still occurs in up to 30% of patients undergoing thoracic radiotherapy, and therefore remains the main dose-limiting obstacle. RILI is a potentially lethal clinical complication of radiotherapy that has 2 main stages: an acute stage defined as radiation pneumonitis, and a late stage defined as radiation-induced lung fibrosis. Patients who develop lung fibrosis have a reduced quality of life with progressive and irreversible organ malfunction. Currently, the most effective intervention for the treatment of lung fibrosis is lung transplantation, but the lack of available lungs and transplantation-related complications severely limits the success of this procedure. Over the last few decades, advances have been reported in the use of mesenchymal stem cells (MSCs) for lung tissue repair and regeneration. MSCs not only replace damaged lung epithelial cells but also promote tissue repair through the secretion of anti-inflammatory and anti-fibrotic factors. Here, we present an overview of MSC-based therapy for radiation-induced lung fibrosis, focusing in particular on the molecular mechanisms involved and describing the most recent preclinical and clinical studies carried out in the field.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Lesões por Radiação/metabolismo , Animais , Biomarcadores , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Transplante de Células-Tronco Mesenquimais , Fibrose Pulmonar/patologia , Fibrose Pulmonar/terapia , Lesões por Radiação/patologia , Lesões por Radiação/terapia , Radioterapia/efeitos adversos , Regeneração
20.
Front Pharmacol ; 10: 490, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156430

RESUMO

Introduction: Pancreatic cancer (PC) is one of the most lethal tumor worldwide, with no prognosis improvement over the past 20-years. The silent progressive nature of this neoplasia hampers the early diagnosis, and the surgical resection of the tumor, thus chemotherapy remains the only available therapeutic option. Sigma receptors (SRs) are a class of receptors proposed as new cancer therapeutic targets due to their over-expression in tumor cells and their involvement in cancer biology. The main localization of these receptors strongly suggests their potential role in ER unfolded protein response (ER-UPR), a condition frequently occurring in several pathological settings, including cancer. Our group has recently identified RC-106, a novel pan-SR modulator with good in vitro antiproliferative activities toward a panel of different cancer cell lines. In the present study, we investigated the in vitro properties and pharmacological profile of RC-106 in PC cell lines with the aim to identify a potential lead candidate for the treatment of this tumor. Methods: Pancreatic cancer cell lines Panc-1, Capan-1, and Capan-2 have been used in all experiments. S1R and TMEM97/S2R expression in PC cell lines was quantified by Real-Time qRT-PCR and Western Blot experiments. MTS assay was used to assess the antiproliferative effect of RC-106. The apoptotic properties of RC-106 was evaluated by TUNEL and caspase activation assays. GRP78/BiP, ATF4, and CHOP was quantified to evaluate ER-UPR. Proteasome activity was investigated by a specific fluorescent-based assay. Scratch wound healing assay was used to asses RC-106 effect on cell migration. In addition, we delineated the in vivo pharmacokinetic profile and pancreas distribution of RC-106 in male CD-1 mice. Results: Panc-1, Capan-1, and Capan-2 express both SRs. RC-106 exerts an antiproliferative and pro-apoptotic effect in all examined cell lines. Cells exposure to RC-106 induces the increase of the expression of ER-UPR related proteins, and the inhibition of proteasome activity. Moreover, RC-106 is able to decrease PC cell lines motility. The in vivo results show that RC-106 is more concentrated in pancreas than plasma. Conclusion: Overall, our data evidenced that the pan-SR modulator RC-106 is an optimal candidate for in vivo studies in animal models of PC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...